- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Halanych, Kenneth_M (1)
-
Howland, Katie_E (1)
-
Learman, Deric_R (1)
-
Mahon, Andrew_R (1)
-
Nygaard, Hannah_J (1)
-
Steen, Andrew_D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Denitrification accounts for a substantial nitrogen loss from environmental systems, shifting microbial composition and impacting other biogeochemical cycles. In Antarctica, rising temperatures cause increased organic matter deposition in marine sediments, which can significantly alter microbially mediated denitrification. To examine the genetic potential of microorganisms driving N-cycling in these sediments, benthic sediment cores were collected at two sites in the Weddell Sea, Antarctica. DNA was extracted from multiple depths at each site, resulting in the reconstruction of 75 high-quality metagenome-assembled genomes (MAGs). Forty-seven of these MAGs contained reductases involved in denitrification. MAGs belonging to the genus Methyloceanibacter were the most abundant MAGs at both sites and all depths, except depth 3–6 cmbsf at one site, where they were not identified. The abundance of these Methyloceanibacter MAGs suggests the potential for nitrate-driven methanol oxidation at both sites. MAGs belonging to Beggiatoaceae and Sedimenticolaceae were found to have the genetic potential to produce intermediates in denitrification and the complete pathway for dissimilatory nitrate reduction to ammonia. MAGs within Acidimicrobiia and Dadabacteria had the potential to complete the final denitrification step. Based on MAGs, Antarctic peninsula sediment communities have the potential for complete denitrification and dissimilatory nitrate reduction to ammonia via a consortium.more » « less
An official website of the United States government
